EE 435

Lecture 4

Spring 2021

Fully Differential Single-Stage Amplifier Design

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- → Common-mode and differential-mode analysis
- → Common Mode Gain
- →• Overall Transfer Characteristics

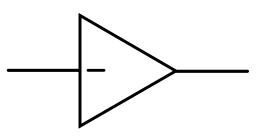
Design of 5T Op Amp Slew Rate

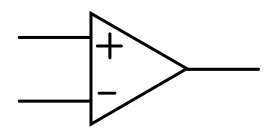
Where we are at: Basic Op Amp Design

- Fundamental Amplifier Design Issues
- Single-Stage Low Gain Op Amps
 - Single-Stage High Gain Op Amps
 - Two-Stage Op Amp
 - Other Basic Gain Enhancement Approaches

Where we are at: Single-Stage Low-Gain Op Amps

Single-ended input





(Symbol does not distinguish between different amplifier types)

Review from last lecture: Differential Input Low Gain Op Amps

Will Next Show That :

• Differential input op amps can be readily obtained from single-ended op amps

 Performance characteristics of differential op amps can be directly determined from those of the single-ended counterparts

Review from last lecture: Counterpart Networks

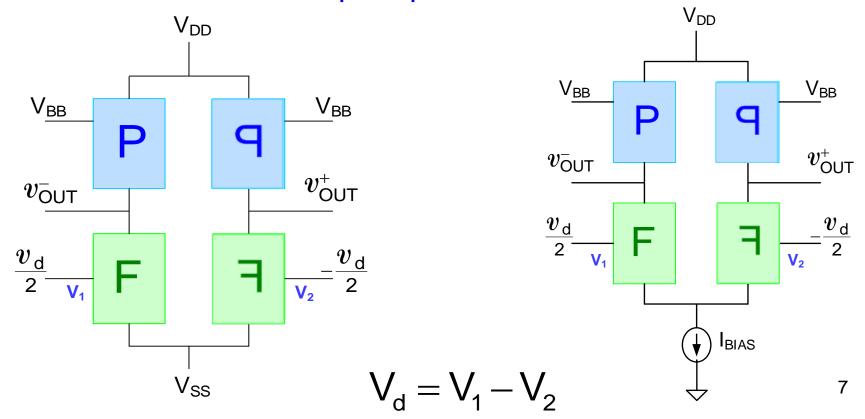
Definition: The counterpart network of a network is obtained by replacing all n-channel devices with p-channel devices, replacing all p-channel devices with n-channel devices, replacing V_{SS} biases with V_{DD} biases, and replacing all V_{DD} biases with V_{SS} biases.

Review from last lecture: Counterpart Networks

Theorem: The parametric expressions for all small-signal characteristics, such as voltage gain, output impedance, and transconductance of a network and its counterpart network are the same.

Synthesis of fully-differential op amps from symmetric networks and counterpart networks

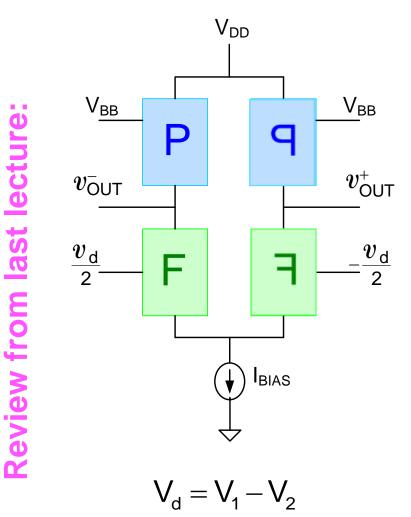
Theorem: If F is any network with a single input and P is its counterpart network, then the following circuits are fully differential circuits --- "op amps".

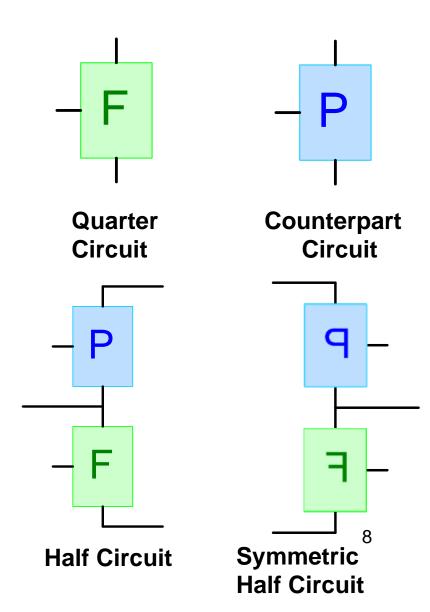


eview from

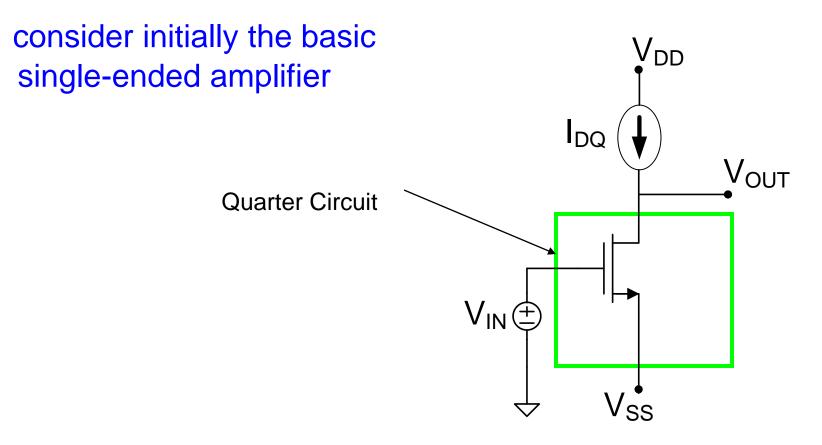
Synthesis of fully-differential op amps from symmetric networks and counterpart networks

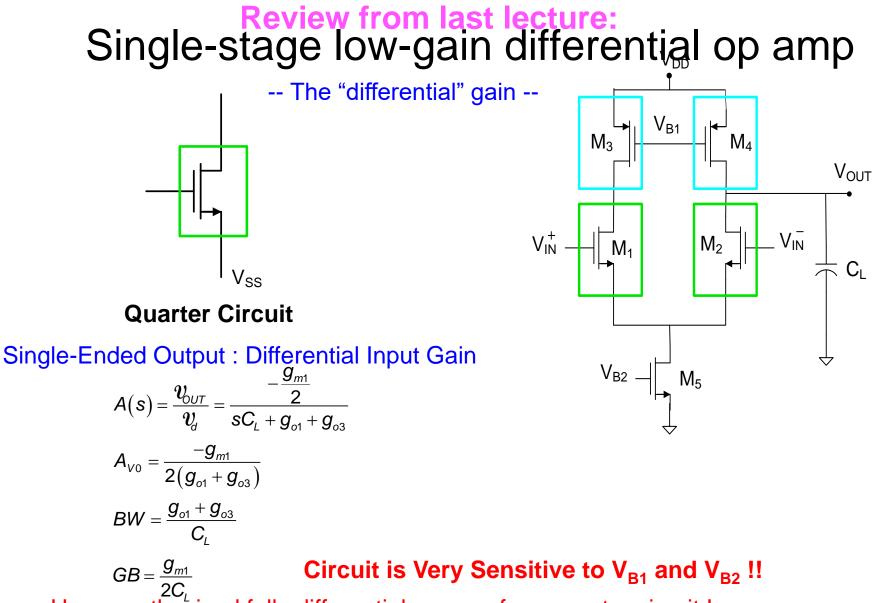
Terminology





Review from last lecture: Applications of Quarter-Circuit Concept to Op Amp Design





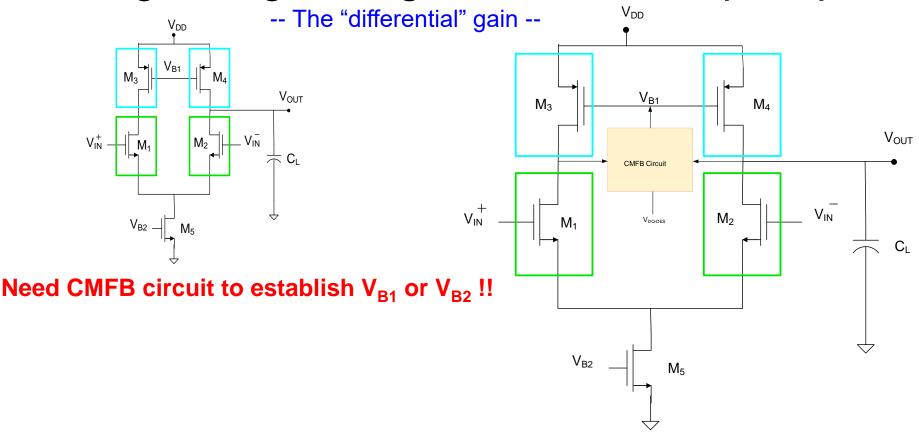
- Have synthesized fully differential op amp from quarter circuit !
- Have obtained analysis of fully differential op amp directly from quarter circuit !

10

- Still need to determine what happens if input is not differential !
- Have almost obtained op amp characteristics by inspection from quarter circuit !!

Review from last lecture:

Single-stage low-gain differential op amp



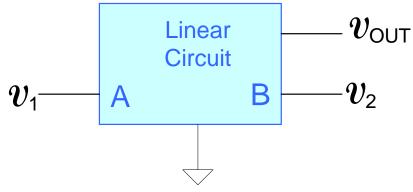
- CMFB circuit determines average value of the drain voltages
- Compares the average to the desired quiescent drain voltages
- Established a feedback signal V_{B1} to set the right Q-point
- Shown for V_{B1} but could alternately be applied to V_{B2}

Details about CMFB circuits will be discussed later

• Fully Differential Single-Stage Amplifier D

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
 - Common Mode Gain
 - Overall Transfer Characteristics
 - Design of 5T Op Amp
 - Slew Rate

Consider <u>an</u> output voltage for any linear circuit with two inputs (i.e. need not be symmetric)



By superposition

$$v_{\text{OUT}} = A_1 v_1 + A_2 v_2$$

where A_1 and A_2 are the gains (transfer functions) from inputs 1 and 2 to the output respectively

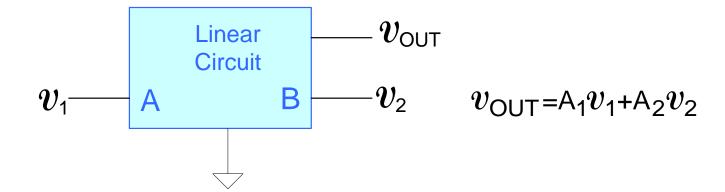
Define the common-mode and difference-mode inputs by

$$v_{c} = \frac{v_{1} + v_{2}}{2}$$

$$v_{d} = v_{1} - v_{2}$$
These two equations can be solved for v_{1} and v_{2} to obtain
$$v_{1} = v_{c} + \frac{v_{d}}{2}$$

$$v_{2} = v_{c} - \frac{v_{d}}{2}$$
13

Consider an output voltage for any linear circuit with two inputs



Substituting into the expression for $v_{\scriptscriptstyle ext{OUT}}$, we obtain

$$v_{\text{OUT}} = A_1 \left(v_{\text{c}} + \frac{v_{\text{d}}}{2} \right) + A_2 \left(v_{\text{c}} - \frac{v_{\text{d}}}{2} \right)$$

Rearranging terms we obtain $v_{OUT} = v_{O}$ (A

$$\operatorname{OUT} = \mathcal{V}_{c} \left(A_{1} + A_{2} \right) + \mathcal{V}_{d} \left(\frac{A_{1} - A_{2}}{2} \right)$$

If we define $A_{\rm c}$ and $A_{\rm d}$ by

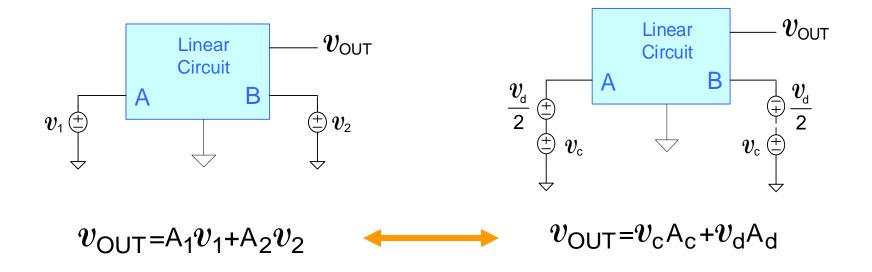
$$A_c = A_1 + A_2 \qquad A_d = \frac{A_1 - A_2}{2}$$

Can express $v_{\scriptscriptstyle \mathsf{OUT}}$ as

$$v_{OUT} = v_c A_c + v_d A_d$$

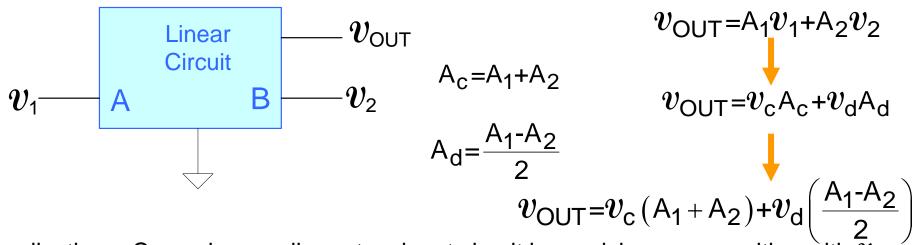
14

Depiction of singe-ended inputs and common/difference mode inputs



- Applicable to any linear circuit with two inputs and a single output
- Op amps often have symmetry and this symmetry further simplifies analysis

Consider <u>any</u> output voltage for any linear circuit with two inputs



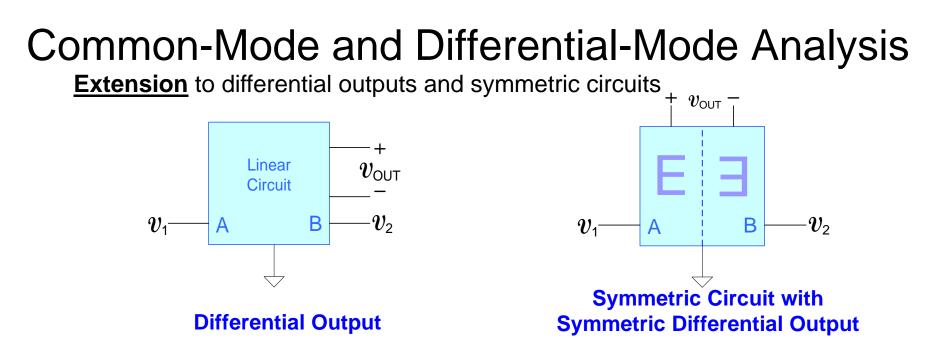
Implication: Can solve any linear two-input circuit by applying superposition with v_1 and v_2 as inputs or with v_c and v_d as inputs. This can be summarized in the following theorem:

Theorem 1: The output for any linear network can be expressed equivalently as $v_{OUT} = A_1 v_1 + A_2 v_2$ or as $v_{OUT} = v_c A_c + v_d A_d$ Superposition can be applied to either v_1 and v_2 to obtain A_1 and A_2 or to v_c and v_d to obtain A_c and A_d

Observation: In a circuit with $A_2 = -A_1$, $A_C = 0$ we obtain $v_{OUT} = v_d A_d$

Analysis of op amps up to this point have assumed differential excitation

16



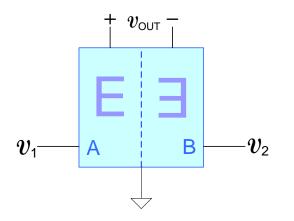
Observation: In a symmetric circuit with a symmetric differential output, $A_c=0$ so can be shown that $v_{OUT}=v_dA_d$ This is summarized in the theorem:

Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$v_{\rm OUT} = A_{\rm d} v_{\rm d}$$

where A_d is the differential voltage gain and the voltage $v_{\rm d}$ = $v_{\rm 1}$ - $v_{\rm 2}$

Symmetric Circuit with Symmetric Differential Output



Theorem 2: The symmetric differential output voltage for any symmetric linear network excited at symmetric nodes can be expressed as

$$v_{\rm OUT} = A_{\rm d} v_{\rm d}$$

where A_d is the differential voltage gain and the voltage $v_{\rm d}$ = $v_{\rm 1}$ - $v_{\rm 2}$

Proof of Theorem 2 for Symmetric Circuit with Symmetric Differential Output:

By superposition, the single-ended outputs can be expressed as

 v_{OUT} + = T_{0PA} v_1 + T_{0PB} v_2 v_{OUT} = T_{0NA} v_1 + T_{0NB} v_2

where T_{0PA} , T_{0PB} , T_{0NA} and T_{0NB} are the transfer functions from the A and B inputs to the single-ended + and - outputs

taking the difference of these two equations we obtain

$$v_{\mathsf{OUT}}$$
 = $v_{\mathsf{OUT}+}$ - $v_{\mathsf{OUT}-}$ =(T_{0PA}-T_{0NA}) v_1 +(T_{0PB}-T_{0NB}) v_2

by symmetry, we have

 $T_{OPA} = T_{ONB}$ and $T_{ONA} = T_{OPB}$

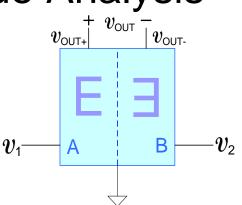
thus can express V_{OUT} as

$$\boldsymbol{v}_{\text{OUT}} = (\mathbf{T}_{\text{OPA}} - \mathbf{T}_{\text{ONA}})(\boldsymbol{v}_1 - \boldsymbol{v}_2)$$

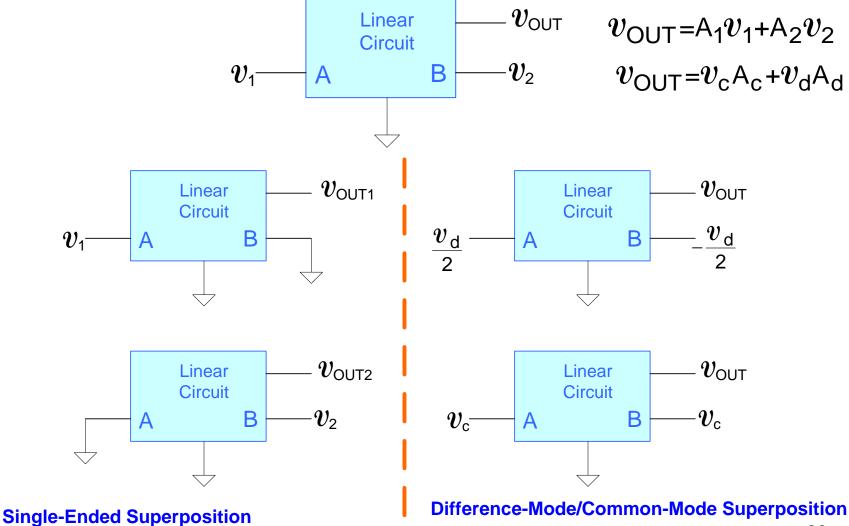
or as

$$v_{\mathsf{OUT}}$$
=A $_{\mathsf{d}}v_{\mathsf{d}}$

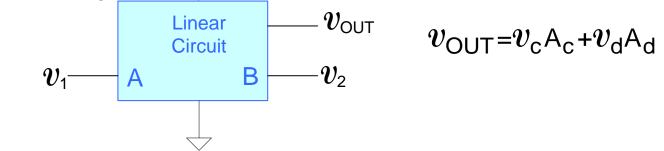
where $\rm A_{d}$ = T_{OPA}\text{-}T_{ONA} and where $\upsilon_{\rm d}$ = $\upsilon_{\rm 1}$ - $\upsilon_{\rm 2}$



Consider any output voltage for any linear circuit with two inputs

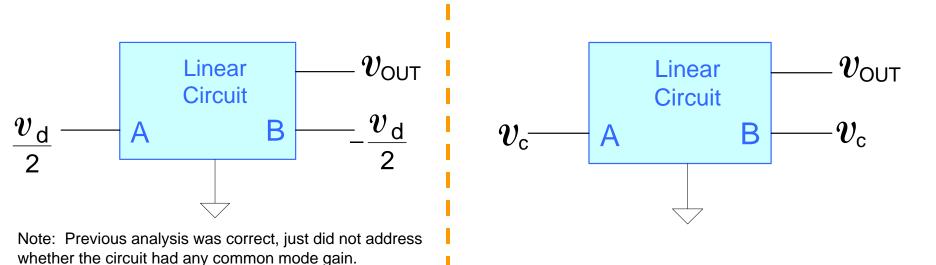


Consider an output voltage for any linear circuit with two inputs



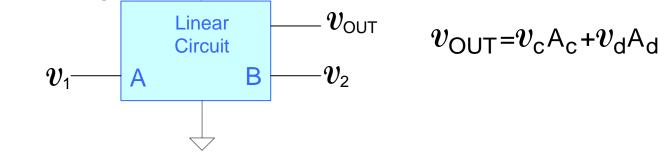
21

- Difference-Mode/Common-Mode Superposition is almost exclusively used for characterizing Amplifiers that are designed to have a large differential gain and a small common-mode gain
- Analysis to this point has been focused only on the circuit on the left

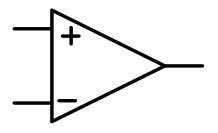


Will now get the total output of an amplifier circuit !

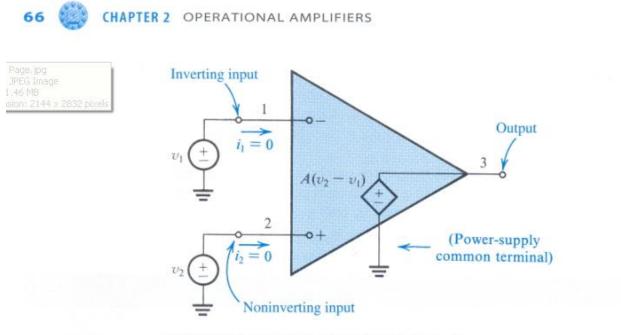
Consider an output voltage for any linear circuit with two inputs



Does Conventional Wisdom Address the Common Mode Gain Issue?



Does Conventional Wisdom Address the Common Mode Gain Issue?



Yes – Common-Mode Gain was Addressed

Does Conventional Wisdom Address the Common Mode Gain Issue?

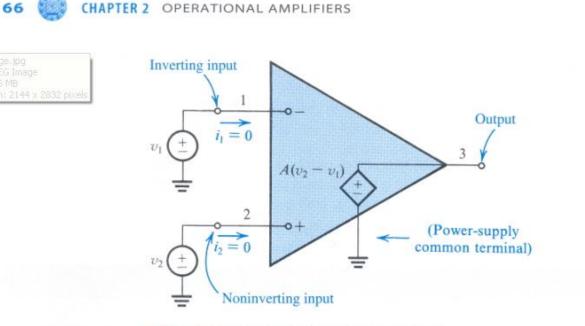


FIGURE 2.3 Equivalent circuit of the ideal op amp.

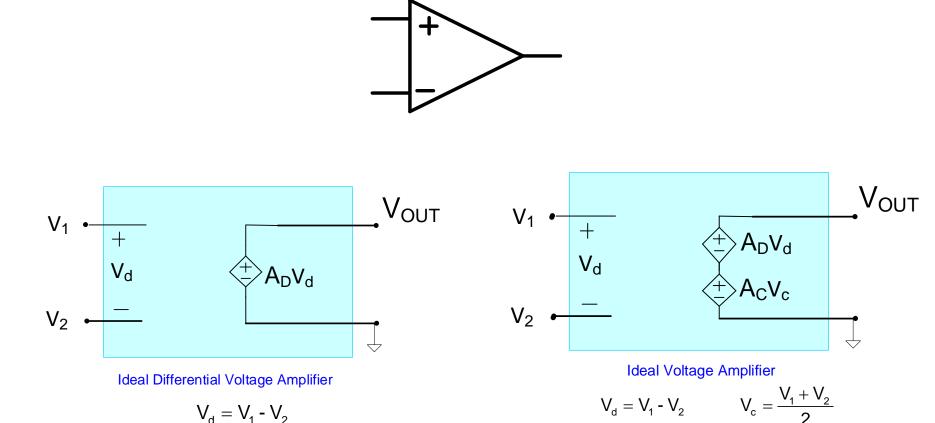
TABLE 2.1 Characteristics of the Ideal Op Amp

- 1. Infinite input impedance
- 2. Zero output impedance
- 3. Zero common-mode gain or, equivalently, infinite common-mode rejection
- 4. Infinite open-loop gain A
- 5. Infinite bandwidth

Yes – Common-Mode Gain was Addressed

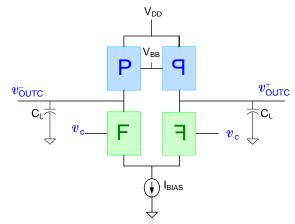
How is Common-Mode Gain Modeled?

If Op Amp is a Voltage Amplifier with infinite input impedance, zero output impedance, and one terminal of the output is grounded

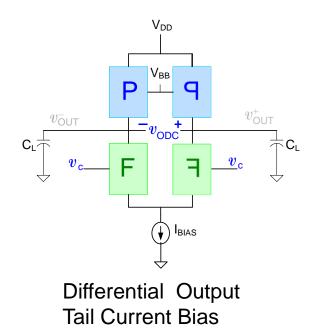


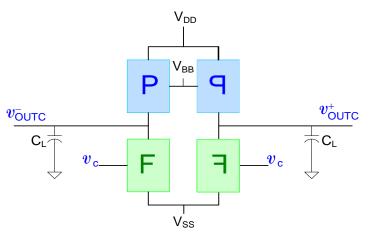
• Fully Differential Single-Stage Amplifier D

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain
 - Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

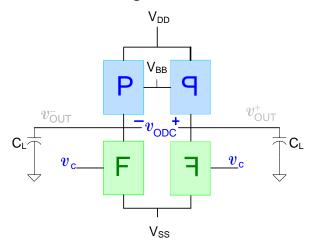


Single-Ended Outputs Tail-Current Bias



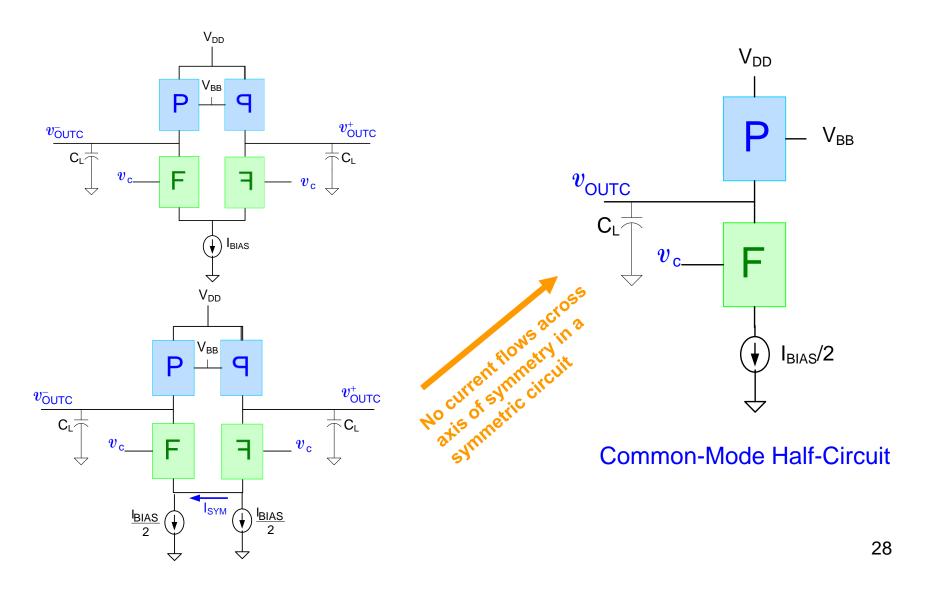


Single-Ended Outputs Tail-Voltage Bias

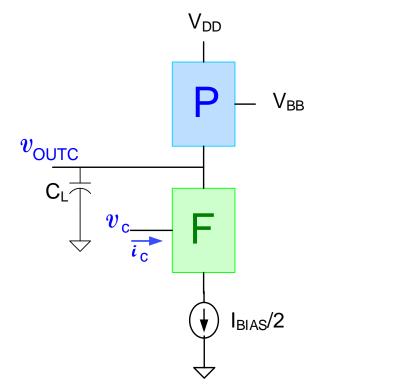


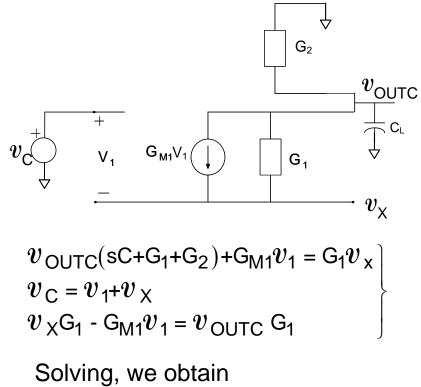
Differential Output 27 Tail Voltage Bias

Consider tail-current bias amplifier



Consider tail-current bias amplifier with $i_c=0$



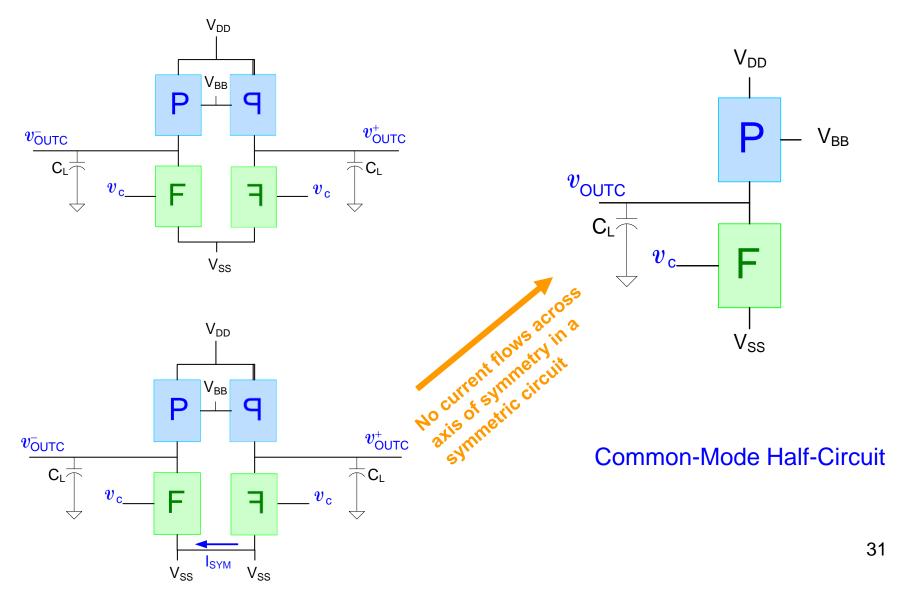


 $v_{OUTC}=0$ thus A_C=0

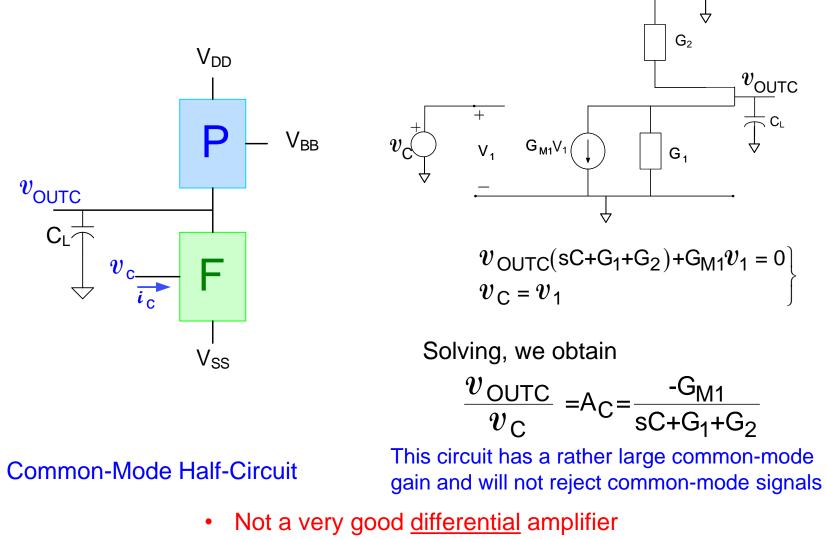
Common-Mode Half-Circuit

(Note: Have assumed an ideal tail current source in this analysis A_C will be small but may not vanish if tail current source is not ideal. Analysis with nonideal current source is simple)

Consider tail-voltage bias amplifier with $i_c=0$



Consider tail-voltage bias amplifier with $i_c=0$



- But of no concern in applications where $v_{\rm C}$ =0

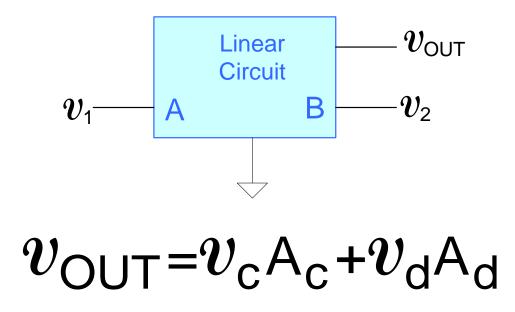
32

• Fully Differential Single-Stage Amplifier D

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain
- Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

Overall Small-Signal Analysis

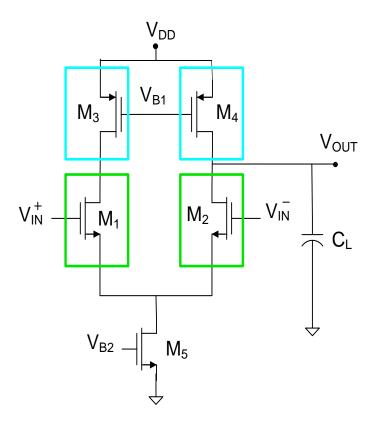
As stated earlier, with common-mode gain and difference-mode gains available

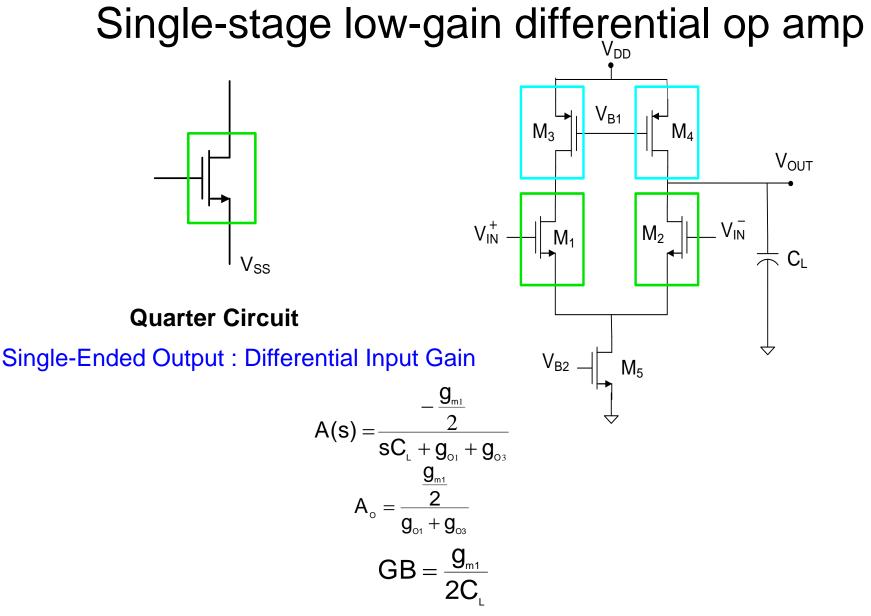


• Fully Differential Single-Stage Amplifier D

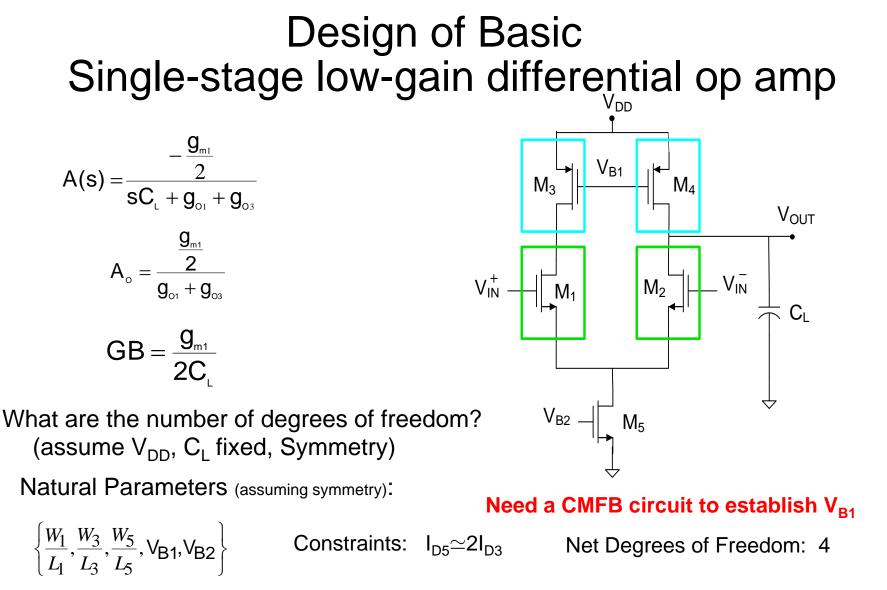
- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain
- Overall Transfer Characteristics
- Design of 5T Op Amp
 - Slew Rate

Design of 5T op amp



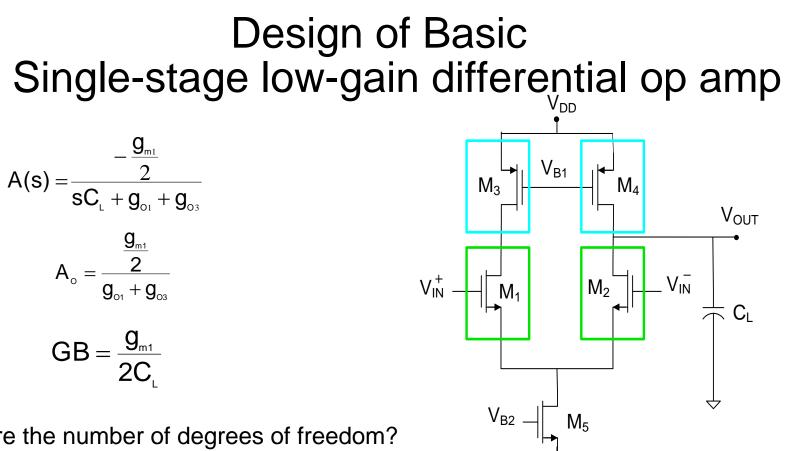


Need a CMFB circuit to establish V_{B1}



- Expressions for A₀ and GB were obtained from quarter-circuit
- Expressions for A₀ and GB in terms of natural parameters for quarter circuit were messy
- Can show that expressions for A₀ and GB in terms of natural parameters for 5T amplifier are also messy

Can a set of practical design parameters be identified?



Constraints: $I_{D5} \simeq 2I_{D3}$

What are the number of degrees of freedom? (assume V_{DD}, C_L fixed, Symmetry)

Natural Parameters:

 $\left\{\frac{W_1}{L_1}, \frac{W_3}{L_3}, \frac{W_5}{L_5}, \mathsf{V_{B1}}, \mathsf{V_{B2}}\right\}$

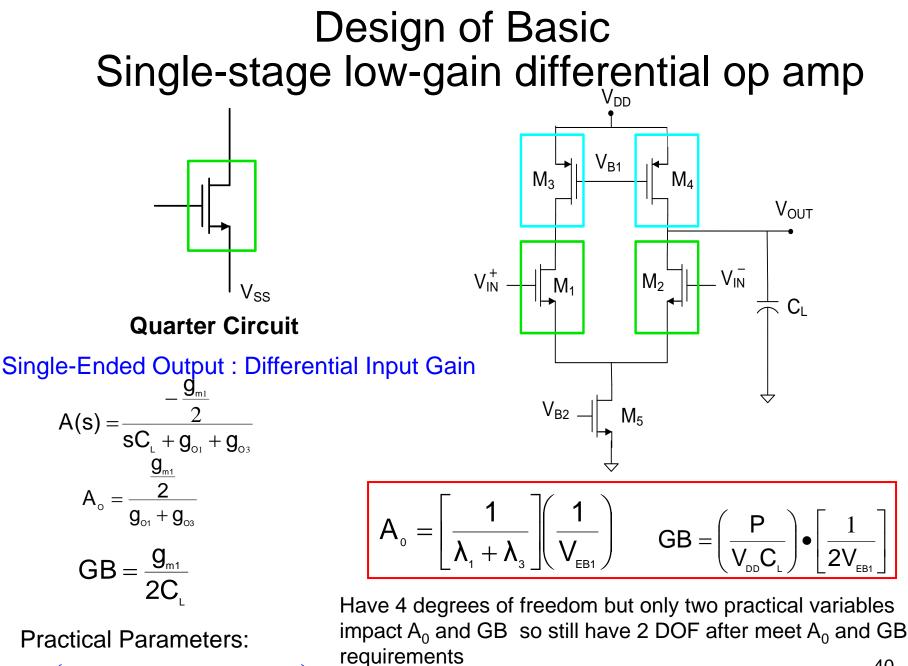
Practical Parameters:

 $\left\{V_{\text{EB1}},V_{\text{EB3}},V_{\text{EB5}},P\right\}$

Will now express performance characteristics in terms of Practical Parameters 39

Need a CMFB circuit to establish V_{B1}

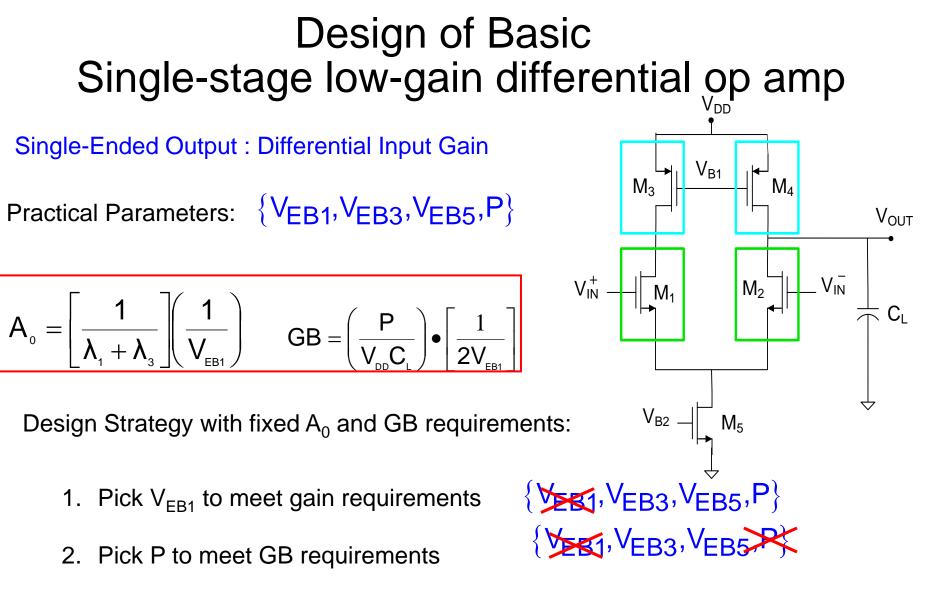
Net Degrees of Freedom: 4



 $\{V_{EB1}, V_{EB3}, V_{EB5}, P\}$

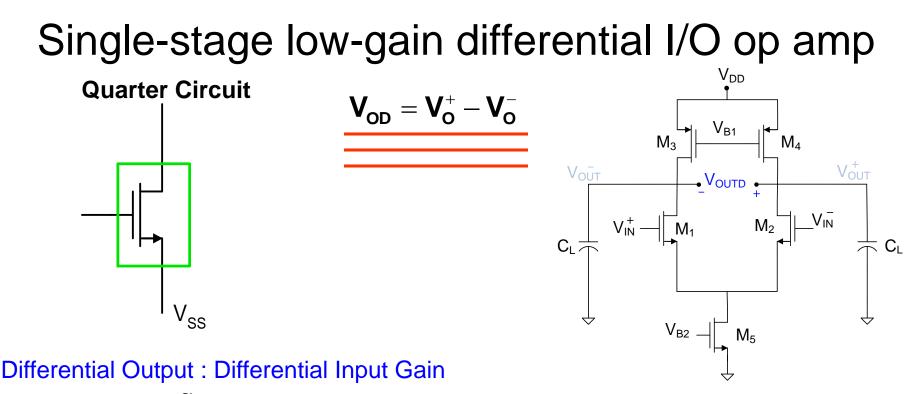
Need a CMFB circuit to establish V_{B1}

40



3. Pick V_{EB3} and V_{EB5} to achieve other desirable properties (i.e. explore the remaining part of the design space)

Note: Design strategy may change if A_0 and GB are not firm requirements



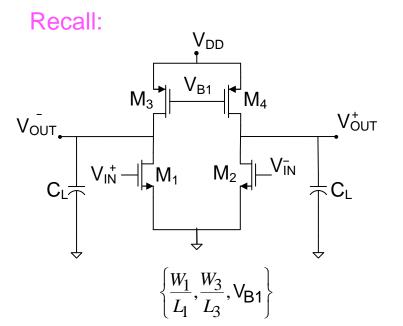
$$A(s) = \frac{g_{m1}}{sC_{L} + g_{01} + g_{03}}$$
$$A_{0} = \frac{g_{m1}}{g_{01} + g_{03}}$$
$$GB = \frac{g_{m1}}{C_{L}}$$

 $A_{_{0}} = \left[\frac{1}{\lambda_{_{1}} + \lambda_{_{3}}}\right] \left(\frac{2}{V_{_{EB1}}}\right) \quad GB = \left(\frac{P}{V_{_{DD}}C_{_{L}}}\right) \bullet \left[\frac{1}{V_{_{EB1}}}\right]$

Have 4 degrees of freedom but only two practical variables impact A_0 and GB so still have 2 DOF after meet A_0 and GB requirements that can be used for other purposes

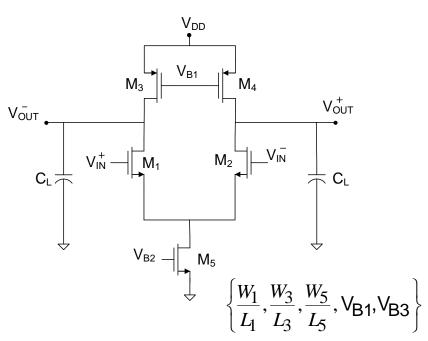
Need a CMFB circuit to establish V_{B1} or V_{B2}^{42}

A_D expressions valid for both tail-current and tail-voltage op amp



So which one should be used?

- Common-mode input range large for tail current bias
- Improved rejection of common-mode signals for tail current bias
- Two extra design degree of freedom for tail current bias
- Improved output signal swing for tail voltage bias (will show later)



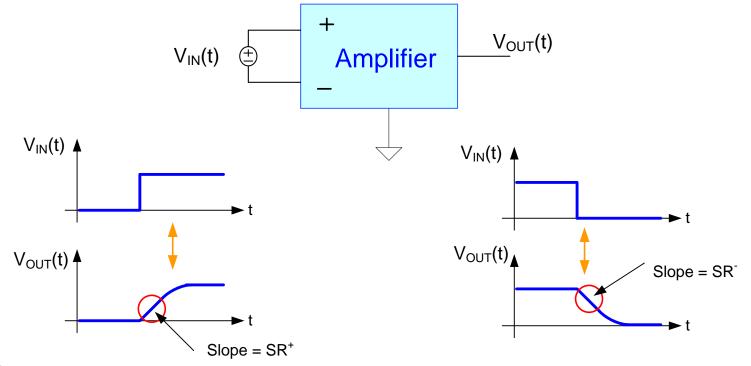


• Fully Differential Single-Stage Amplifier D

- General Differential Analysis
- 5T Op Amp from simple quarter circuit
- Biasing with CMFB circuit
- Common-mode and differential-mode analysis
- Common Mode Gain
- Overall Transfer Characteristics
- Design of 5T Op Amp
- Slew Rate

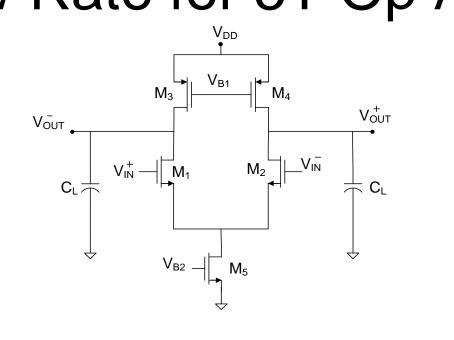
Slew Rate

Definition: The slew rate of an amplifier is the maximum rate of change that can occur at the output node



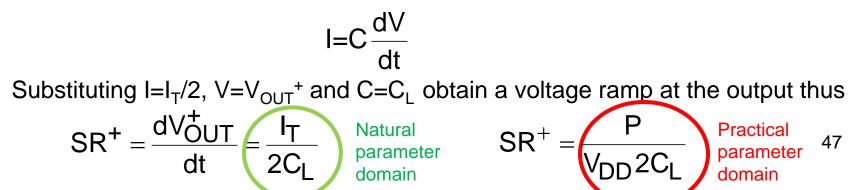
- SR is a nonlinear large-signal characteristic
- Input is over-driven (some devices in amplifier usually leave normal operating region)
- Hard input overdrive depicted in this figure
- Magnitude of SR⁺ and SR⁻ usually same and called SR (else SR⁺ and SR⁻ must be given)

Slew Rate for 5T Op Amp

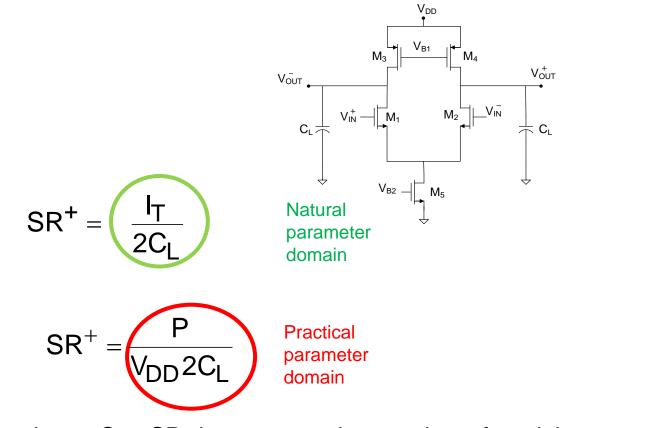


With large step input on V_{IN}^+ , all tail current (I_T) will go to M_1 thus turning off M_2 thus current through M_4 which is $\frac{1}{2}$ of I_T will go to load capacitor C_L

The I-V characteristics of any capacitor is



Slew Rate for 5T Op Amp

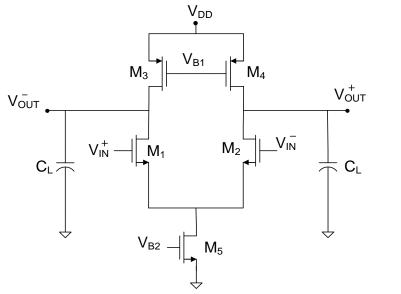


Question: Can SR⁺ be expressed as product of model parameters and architecture dependent term? $SR^{+} = \left[\frac{1}{2C_{I}}\right] [I_{T}] \qquad SR^{+} = \left[\frac{1}{V_{DD}2C_{I}}\right] [P]$

Question: Can SR⁺ be expressed in small-signal parameter domain?

$$SR^{+} = \frac{g_{01}I_{T}}{\lambda 2C_{I}} = \left[\frac{I_{T}}{\lambda 2C_{I}}\right][g_{01}]$$
⁴⁸

Slew Rate



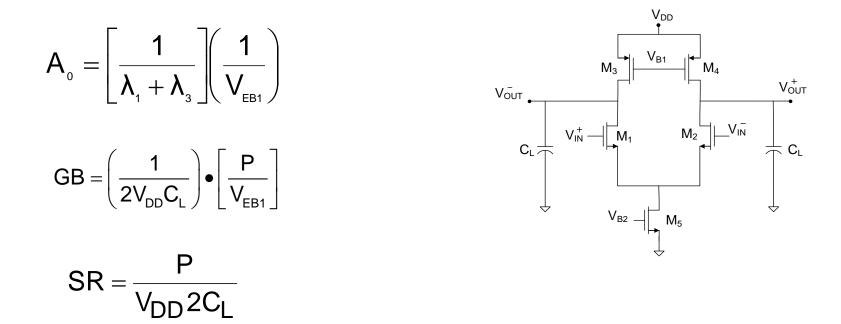
It can be similarly shown that putting a large negative step on the input steer all current to M_2 thus the current to the capacitor C_L will be I_T minus the current from M_2 which is still $I_T/2$. This will cause a negative ramp voltage on V_{OUT}^+ of value

$$SR^{-} = \frac{dV_{OUT}^{+}}{dt} = -\frac{I_{T}}{2C_{L}} = -\frac{P}{V_{DD}2C_{L}}$$

Since the magnitude of SR⁺ and SR⁻ are the same, obtain a single SR for the amplifier of value

$$SR = \frac{P}{V_{DD} 2C_L}$$
⁴⁹

Interdependence of Parameters



50

Note: With this structure, the three key performance characteristics $\{A_0, GB, SR\}$ can not be independently specified

e.g. If V_{EB1} is picked to set A₀, then $\frac{P}{V_{DD}C_L}$ will determine both GB and SR Alternately, observe $SR = \frac{GB}{A_0(\lambda_1 + \lambda_2)}$

Stay Safe and Stay Healthy !

End of Lecture 4